GENERALIZING CONTINUTY IN INTUITIVE FUZZY IDEAL TOPOLOGICAL SPACES

هجلق كليق التربيق الأرساسي<mark>ق العلوم التربويق والإنسانيق</mark> مجلة علمية محكمة تصدر عن كلية التربية الأساسية — جامعة بابل

GENERALIZING CONTINUTY IN INTUITIVE FUZZY IDEAL TOPOLOGICAL SPACES

Riyam Thamir And Walaa Hassan
Department of Mathematics ,College of Education for Pure Sciences
University of Thi-Qar ,Iraq
alia81971@gmail.com

تعميم الاستمرارية في الفضاءات التبولوجية المثالية الحدسية

الخلاصة: في هذا البحث قدمنا ودرسنا تعميم الاستمرارية في الفضاءات التبولوجية المثالية الضبابية الحدسية وتناولنا بعض التعاريف والمبرهنات

Abstract: In this paper we introduce and study the concept of intuitionistic fuzzy idealgcontinuous mappings in Intuitionistic fuzzy ideal topological spaces.

Keywordes: Intuitionistic fuzzy topology, Intuitionistic fuzzy points, Intuitionistic fuzzy ideal g-closed sets and Intuitionistic fuzzy ideal g-open sets.

Introdection: After the introduction of fuzzy sets by zadeh in 1965 [20] and fuzzy topology by chang [7] in 1968. Several researchers Were conducted on the generalizations of the notions of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy Sets was introduced by Attanassove [1] as a generalization of fuzzy sets. Coker and Seadati [7] defined the notion of intuitionistic fuzzy topology and studied the basic concept of intuitionistic Fuzzy point [10] in [5] Saber and Abdel-Sattar introduce ideal on fuzzy topological spaces. Recently many fuzzy topoploicals. Concept such as a fuzzy compactness [11] fuzzy separation axioms [8] fuzzy metric spaces [17] fuzzy Continuity [12] fuzzy multifunction have been generalized for intuitionistic fuzzy topological spaces. Salama and Alblowi we introduce the intuitionistic fuzzy ideals topologicals spaces [2]. In the authores of this paper Extend the concepts of fuzzy g-closed sets due to Thakur and Malviya [15] in intuitionistic fuzzy topologicals spaces.

In this paper we introduce and study the concept of intuitionistic fuzzy ideal g-continuous mapping in intuitionistic Fuzzy ideal topological spaces .

Preliminaries

Definition 2.1[2]: A nonempty collection of fuzzy sets v of a et X is called fazzy ideal on X if f:

1) $A \in v \ and \ B \subseteq A \rightarrow A \in v \ (heredity)$.

2) $A \in v$ and $B \in v \rightarrow A \in v$ (finite additivity).

Definition 2.2:[1] Let X be a nonempty fixed set . An intuitionistic fuzzy sets A is an having the Form $A = \{ < X, \delta_A(x), \varphi_A(x) >: x \in X \}$ Where the function $\delta_A : X \to I$ and $\varphi_A : X \to I$ denote the degree of membership (namely $\delta_A(x)$ and the degree of nonmembership (namely $\varphi_A(x)$ of each element $x \in X$ to the set A , respectively , and $0 \le \delta_A(x) + \varphi_A(x) \le 1$ for each $x \in X$. **Definition 2.3: [1]** Let X be a nonempty set and the intuitionistic fuzzy sets A and B be in the Form $A = \{ < X, \delta_A(x), \varphi_A(x) >: x \in X \}$, $B = \{ < X, \delta_B(x), \varphi_B(x) >: x \in X \}$ and let $\{A_i : i \in J\}$ be

GENERALIZING CONTINUTY IN INTUITIVE FUZZY IDEAL TOPOLOGICAL SPACES

مجلق كليق التربيق الأساسيق العلوم التربويق والإنسانيق مجلة علمية محكمة تصدر عن كلية التربية الأساسية − جامعة بابل

```
an arbitrary family of intuitionistic fuzzy sets in X . Then 1) A \subseteq B if \forall x \in X \ [\delta_A(x) \le \delta_B(x) \ and \ \varphi_A(x) \ge \varphi_B(x)]; 2) A = B if A \subseteq B and B \subseteq A; 3) A^c = \{ < x, \varphi_A(x), \delta_A(x) >: x \in X \}; 4) \cap A_i = \{ < x, \wedge \delta_{Ai}(x), \vee \varphi_{Ai}(x) >: x \in X \}; 5) \cup A_i = \{ < x, \vee \delta_{Ai}(x), \wedge \varphi_{Ai}(x) >: x \in X \}; 6) \tilde{0} = \{ < x, 0, 1 >: x \in X \} and \tilde{1} = \{ < x, 1, 0 >: x \in X \};
```

Definition 2.4: [9] Two intuitionistic fuzzy set A and B if X said to be q-coincident (AqB FOR SHORT)if and only if there exits An element $x \in X$ such that $\delta_A(X) > \varphi_B(x)$ or $\varphi_B(x) < \delta_A(X)$.

Defintion 2.5:[9] An intuitionistic fuzzy topology on a nonempty set X is a family τ of intuitionistic fuzzy sets in X satisfy the following axioms :

1) $\tilde{0}$, $\tilde{1}$ ϵ au .

 $2)G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$.

3) \cup $G_i \in \tau$ for any arbitrary family $\{G_i : i \in j\} \subseteq \tau$.

The pair (X,τ) is called intuitionistic fuzzy topoplgical space and each intuitionistic fuzzy set in τ is Intuitionistic fuzzy open set in X.

Definition 2.6:[9] let (X,τ) be an intuitionistic fuzzy topological spaces and $A=< x, \delta_A(X), \varphi_B(x)>$ be an intuitionistic fuzzy set in X .Then the fuzzy interior and fuzzy closure of A are defined by

 $CL(A) = \bigwedge \{V: V \text{ is an intuitionistic fuzzy closed set in } X \text{ and } A \subseteq V \}.$

 $Int(A) = V \{G: G \text{ is an intuitionistic fuzzy open set in } X \text{ and } G \subseteq V \}.$

Definition 2.7 : [9] The complement A^c of an intuitionistic fuzzy set A is an intuitionistic fuzzy topological spaces (X, τ) is called An intuitionistic fuzzy closed set in X .

Definition 2.8:[9] Let X and Y be two nonempty sets and $f: X \to Y$ be a function . Then (a) $if B = \{ < y, \delta_B(y), \varphi_B(y) >: y \in Y \}$ is an intuitionistic fuzzy set in Y , then the preimage of B under f denoted by $f^{-1}(B)$, is the IFS in X defined by

 $f^{-1}(B) = \langle x, f^{-1}(\delta_{B)}(x), f^{-1}(\varphi_{B)}(x) : x \in X \}.$

(b) if $A = \{ \langle x, \gamma_A(x), V_A(x) \rangle : x \in X \}$ is an intuitionistic fuzzy set in X, then the imge of A under f denoted By f(A) is an intuitionistic fuzzy set in Y denoted by $f(A) = \{ y, f(\gamma_A(y), f(V_y)(y) \} : y \in Y \}$. where $f(V_y) = 1 - f(1 - V_A)$.

Definition 2.9: [12] Let (X,τ) and (Y,ϑ) be two intuitionistic fuzzy topological spaces and let $f\colon X\to Y$ be a function .Then f is said to be intuitionistic fuzzy continuous if and only if the preimage of each intuitionistic fuzzy open set in Y is an intuitionistic fuzzy open set in X.

Definition 2.10 :[11] A family $\{G_i : i \in \Lambda\}$ of intuitionistic fuzzy set in X is said to be an intuitionistic fuzzy open cover of X if $\bigcup \{G_i : i \in \Lambda\} = 1$ and a finite subfamily of an intuitionistic fyzzy open cover of X which also an intuitionistic fuzzy open cover of X is called a finite subcover $\{G_i : i \in \Lambda\}$.

Definition 2.11: [11] An intuitionistic fuzzy topological space (X, τ) is called fuzzy compact if each intuitionistic fuzzy open cover has a finite subcover.

مجلة كليق التربيق الأساسية العلوم التربوية والإنسانية

GENERALIZING CONTINUTY IN INTUITIVE FUZZY IDEAL TOPOLOGICAL SPACES

جلة علمية محكمة تصدر عن كلية التربية الأساسية - جامعة بابل

Definition 2.12: [16] An intuitionistic fuzzy set A of a intuitionistic fuzzy topological space (X,τ) is called an intuitionistic fuzzy generalized closed (intuitionistic g-closed) if $cl(A) \subseteq 0$ wherever $A \subseteq 0$ and 0 is intuitionistic fuzzy open.

Definition2.13:[16] Complement of an intuitionistic fuzzy g-closed set is called intuitionistic fuzzy g-open set.

Remark 2.1 : [16] Every intuitionistic fuzzy closed set (intuitionistic fuzzy open set) is intuitionistic fuzzy g- closed set (intuitionistic fuzzy g-open set) but its converse may not be true

Throughout this paper $f:(X,\tau) \to (Y,\vartheta)$ denote the mapping from an intuitionistic fuzzy topological space (X,τ) to another intuitionistic topological space (Y,ϑ) .

Definition 2.14: A mapping $I_1, I_2: I^X \to I$, is called intuitionistic fuzzy ideals on X if it is satisfies the conditions:

 $1)I_1(A) + I_2(A) \leq 1, \forall A \in I^X$.

 $2I_1(0) = I_2(0) = 1$ and $I_1(1) = I_2(1) = 0$.

3) if $A \leq B$, then $I_1(B) \leq I_1(A)$ and $I_2(A) \leq I_2(B)$ for each $A, B \in I^X$.

 $4)I_1(A \cup B) \ge I_1(A) \cap I_1(B) \text{ and } I_2(A \cap B) \le I_2(A) \cap I_2(B), \text{ for each } A, B \in I^X.$

Then (X, I_1, I_2) is called intuitionistic fuzzy ideals sets.

Definition 2.15: let (X, τ, I) be an intuitionistic fuzzy ideal topological spaces and $A = \langle x, \delta_A(X), \varphi_B(x) \rangle$ be an intuitionistic fuzzy ideal set in X .Then the fuzzy interior and fuzzy closure of A are defined by

 $CL(A) = \Lambda\{V: V \text{ is an intuitionistic fuzzy ideal closed set in } X \text{ and } A \subseteq V \}.$

 $Int(A) = V \{G: G \text{ is an intuitionistic fuzzy ideal open set in } X \text{ and } G \subseteq V \}.$

Defintion 2.16: An intuitionistic fuzzy ideal topology on a nonempty set X is a family τ of intuitionistic fuzzy ideal

sets in X satisfy the following axioms:

1) $\tilde{0}$, $\tilde{1}$ ϵ τ .

 $2)G_1\cap G_2\in\tau\ for\ any\ G_1,G_2\in\tau\ .$

3)
 $G_i \in \tau$ for any arbitrary family { $G_i : i \epsilon j$ } $\subseteq \tau$.

The pair (X,τ,I) is called intuitionistic fuzzy topoplgical space and each intuitionistic fuzzy ideal set in τ is Intuitionistic fuzzy ideal open set in X.

Definition2.17: The complement A^c of an intuitionistic fuzzy ideal set A is an intuitionistic fuzzy ideal topological space (X, τ, I) is called An intuitionistic fuzzy ideal closed set in X.

Definition2.18: Let X and Y be two nonempty sets and $f: X \to Y$ be a function . Then (a) $if B = \{ \langle y, \delta_B(y), \varphi_B(y) \rangle : y \in Y \}$ is an intuitionistic fuzzy ideal set in Y , then the preimage of B under f denoted by

 $f^{-1}(B)$, is the IFS in X defined by $f^{-1}(B) = \langle x, f^{-1}(\delta_{B)}(x), f^{-1}(\varphi_{B)}(x) : x \in X \}$. (b) if $A = \{\langle x, \gamma_A(x), V_A(x) \rangle : x \in X \}$ is an intuitionistic fuzzy ideal set in X , then the imge of A under f denoted By f(A) is an intuitionistic fuzzy ideal set in Y denoted by

 $f(A) = \{y, f(\gamma_A(y), f(V_y)(y) >: y \in Y\}$. where $f(V_y) = 1 - f(1 - V_A)$.

Definition 2.19: Let (X, τ, I) and (Y, ϑ, I) be two intuitionistic fuzzy ideal topological spaces and

مجلق كليق التربيق الأساسيق العلوم التربوية والأنسانيق محلة علمية محكمة تصدر عن كلية التربية الأساسية – حامعة بايل

GENERALIZING CONTINUTY IN INTUITIVE FUZZY IDEAL TOPOLOGICAL SPACES

let $f: X \to Y$ be a function .Then f is said to be intuitionistic ideal fuzzy continuous if and only if the preimage of each intuitionistic fuzzy ideal open set in Y is an intuitionistic fuzzy ideal open set in X.

Definition 2.20: A family $\{G_i : i \in \Lambda\}$ of intuitionistic fuzzy ideal set in X is said to be an intuitionistic fuzzy ideal open cover of X if $\cup \{G_i : i \in \Lambda\} = 1$ and a finite subfamily of an intuitionistic fyzzy ideal open cover of X which also an ntuitionistic fuzzy ideal open cover of X is called a finite subcover $\{G_i : i \in \Lambda\}$.

Definition 2.21: An intuitionistic fuzzy ideal topological space (X, τ, I) is called fuzzy compact if each intuitionistic fuzzy ideal open cover has a finite subcover.

Definition 2.22: An intuitionistic fuzzy ideal set A of a intuitionistic fuzzy ideal topological space (X, τ, I) is called an Intuitionistic fuzzy ideal generalized closed (intuitionistic ideal g-closed) if $cl(A) \subseteq 0$ wherever $A \subseteq 0$ and 0 is intuitionistic fuzzy ideal open.

Definition2.23: Complement of an intuitionistic fuzzy ideal g- closed set is called intuitionistic fuzzy ideal g-open set.

Remark2.2: Every intuitionistic fuzzy ideal closed set (intuitionistic fuzzy ideal open set) is intuitionistic fuzzy ideal g- closed set (intuitionistic fuzzy ideal g-open set)

but its converse may not be true. Throughout this paper $f:(X,\tau,I)\to (Y,\vartheta,I)$ denote the mapping from an intuitionistic fuzzy ideal topological space (X, τ, I) to another intuitionistic ideal toplogical space (Y, ϑ, I) .

3 – Intuitionistic Fuzzy Ideal g – Continuous Mapping

Definition3.1: A mapping $f:(X,\tau,I) \to (Y,\vartheta,I)$ is said to be intuitionistic fuzzy ideal gcontinuous if the invers imge of every intuitionistic fuzzy ideal closed set of Y is intuitionistic fuzzy ideal g – closed in X.

Remark 3.1: Every intuitionistic fuzzy ideal continuous mapping is intuitionistic fuzzy ideal g-closed Continuous but the converse may not be true. For,

Theorem 3.1: A maping $f: (X, \tau, I) \to (Y, \vartheta, I)$ is intuitionistic fuzzy ideal gcontinuous if and only if the inverse Image of every intuitionistic fuzzy ideal open set of Y is intuitionistic fuzzy ideal g-open in X.

Proof: It is obvious because

 $f^{-1}(U^c) = (f^{-1}(U))^c$ for every intuitionistic fuzzy ideal set U of Y.

Theorem 3.2: If $f: (X, \tau, I) \to (Y, \vartheta, I)$ is an intuitionistic fuzzy ideal g – continuous then for each intuitionistic fuzzy ideal point $c(\alpha, \beta)$ of X and each fuzzy ideal open set $V f(c(\alpha, \beta)) \subseteq V$ there exist a intuitionistic fuzzy ideal g – open set Usuch that $c(\alpha, \beta) \subseteq U$ and $f(U) \subseteq V$.

Proof: Let $c(\alpha, \beta)$ be a intuitionistic fuzzy ideal point of X an V be a intuitionistic fuzzy ideal open set of Ysuch that $f(c(\alpha,\beta))_a V$. put $U=f^{-1}(V)$. then by hypothesies U is an intuitionistic fuzzy ideal g – open set of X which contains A.

Definition 3.2: Let (X, τ, I) bean intuitionistic fuzzy ideal topological space. The generalized closure of a intuitionistic fuzzy ideal set A of X denoted by gcl(A) is the intersection of all intuitionistic fuzzy ideal g-closed set of X which

GENERALIZING CONTINUTY IN INTUITIVE FUZZY IDEAL TOPOLOGICAL SPACES

هجلق كليق التربيق الأساهيق العلوم التربويق والإنسانيق مجلة علمية محكمة تصدر عن كلية التربية الأساسية — جامعة بابل

contins A.

Remark3.2: It is clear that, $A \subseteq gcl(A) \subseteq cl(A)$ for any intuitionistic fuzzy ideal set A of X.

Theorm3.3: if $f:(X,\tau,I) \to (Y,\vartheta,I)$ is intuitionistic fuzzy ideal g – continuous then $f(gcl(A)) \subseteq cl(f(A))$ for every intuitionistic fuzzy set A of X.

Proof: let A be an intuitionistic fuzzy ideal set of X. Then cl(f(A)) is an intuitionistic fuzzy ideal closed set of Y. Since f is fuzzy ideal g – continuous $f^{-1}(cl(f(A)))$ is an intuitionistic fuzzy ideal g – closed in X. clearly $A \subseteq f^{-1}(cl(A))$. Therefore

$$gcl(A) \subseteq gcl(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A)))$$
. Hence $f(gcl(A)) \subseteq cl(f(A))$.

Definition3.3: An intuitionistic fuzzy ideal topological space (X, τ, I) is said to be intuitinistic fuzzy ideal $T_{1\backslash 2}$ if every intuitionistic fuzzy ideal g – closed set in X is intuitionistic fuzzy ideal closed in X.

Theorem3.5: A mapping f from an intuitionistic fuzzy ideal $T_{1\backslash 2}$ space (X, τ, I) to an intuitionistic fuzzy ideal topological space (Y, ϑ, I) is intuitionistic fuzzy ideal continuous if and only if it is intuitionistic ideal g – continuous . Proof: obvious.

Thorem3.6: If : $(X, \tau, I) \to (Y, \vartheta, I)$ is intuitionistic fuzzy ideal g – continuous and $g: (Y, \vartheta, I) \to (Z, \rho, I)$ is continuous fuzzy ideal continuous.

. Then $gof:(X,\tau,I)\to (Z,\rho,I)$ is intuitionistic fuzzy ideal g-continuous .

 $Proof: If \ an \ intuitionistic \ fuzzy \ ideal \ closed \ in \ Z$, then $f^{-1}(A)$ is intuitionistic fuzzy ideal closed in Y because g is intuitionistic fuzzy ideal continuous . Therefore

 $(gof)^{-1}(A) = f^{-1}(g^{-1}(A))$ is intuitionistic fuzzy ideal g – closed set in X. Hence gof is intuitionistic fuzzy ideal g – continuous .

Theorem 3.7: if $f:(X,\tau,I) \to (Y,\vartheta,I)$ and $g:(Y,\vartheta,I) \to (Z,\rho,I)$ are two intuitionistic fuzzy ideal g- continuous mapping and (Y,ϑ,I) is intuitionistic fuzzy ideal $T_{1\backslash 2}$ space then $gof:(X,\tau,I) \to (Z,\rho,I)$ is intuitionistic fuzzy ideal g- continuous . Proof: Obvious.

Definition 3.5: An intuitionistic fuzzy ideal topological space (X, τ, I) is said to be intutionistic fuzzy ideal GO — compact if every intuitionistic fuzzy ideal g —open cover of X has finite subcover .

Theorem3.8: Intuitionistic fuzzy ideal g — continuous image of an intuitionistic intuitionistic fuzzy GO — compact space is intuitionistic fuzzy ideal compact. Proof: Let $f:(X,\tau,I) \to (Y,\vartheta,I)$ be an intuitionistic fuzzy ideal g — continuous map from an intuitionistic fuzzy ideal GO — compact space (X,τ,I) onto an intuitionistic fuzzy ideal topological space (Y,ϑ,I) .

Let $\{A_i : i \in \Lambda\}$ be an intuitionistic fuzzy idael g – open cover of Y then $\{f^{-1}(A_i): i \in \Lambda\}$ is an intuitionistic fuzzy ideal g – open cover of X.

Since X is intuitionistic fuzzy ideal GO — compact it has finite

intuitionistic fuzzy subcover say $\{f^{-1}(A_1), \dots, f^{-1}(A_n)\}$. Since f is onto $\{A_1, \dots, A_n\}$ is an intuitionistic fuzzy ideal open cover Y and so (Y, ϑ, I) is

GENERALIZING CONTINUTY IN INTUITIVE FUZZY IDEAL TOPOLOGICAL SPACES

هجلق كليق التربيق الأساهيق العلوم التربويق والإنسانيق مجلة علمية محكمة تصدر عن كلية التربية الأساسية − جامعة بابل

intuitionistic fuzzy ideal compact.

Definition3.6: An intuitionistic fuzzy ideal toplogical space X is called intuitionistic fuzzy ideal GO- connected if there is no proper intuitionustic fuzzy ideal of X which is both intuitionistic fuzzy ideal g- open and intuitionistic fuzzy ideal g-closed.

Remark 3.4: Every intuitionistic fuzzy ideal GO-connected space is intutionistic fuzzy ideal $C_5-connected$ [15], but the converse may not to be true . for ,

Example 3.1: Let $X = \{a,b\}$, $U = \langle x, (.5/a,.7/b), (.5/a,.3/b) \rangle$, and $\tau = \{0,U,1\}$ be an intuitionistic fuzzy ideal topology on X, then (X,τ,I) is intuitionistic fuzzy ideal connected but not fuzzy ideal GO - connected.

Theorem3.9: An intuitionistic fuzzy ideal $T_{1\backslash 2}$ – space is intuitionistic fuzzy ideal C_5 – connected if and only if it is intuitionistic fuzzy ideal GO – connected . proof:Obvious:

Theorem3. 10: If $f:(X,\tau,I) \to (Y,\vartheta,I)$ is an intuitionistic fuzzy ideal g — continuous surjection and X is intuitionistic fuzzy ideal GO — connected then Y is intuitionistic fuzzy ideal C_5 — connected .

proof: Suppose Y is not intuitionistic fuzzy ideal connected. Then there exists a proper intuitionistic fuzzy ideal set G of Y which is both intuitionistic fuzzy ideal open and intuitionistic fuzzy ideal closed. Therefore $f^{-1}(G)$ is proper intuitionistic fuzzy ideal closed and intuitionistic fuzzy ideal open set of X, because f intuitionistic fuzzy ideal g — continuous surjection. Hence X is not intuitionistic fuzzy ideal GO — connected.

Referances

- 1)K. Atanassov, Intuitionistic fuzzy sets , In VII ITKR, s Session , (V. Sgurev , Ed.) Sofia , Bulgaria, (1983) .
- $2)M.E.Abd\ El-Monsef$; A. A. Nasef and A. A. Salama , Extensions of Fuzzy Ideals, Bull. Cal. Math .Soc., 92(3)(2000)181-188. (2000).
 - 3) $M.E.Abd\ El-Monsef$; $A.A.Nasef\ and\ A.A.Salama$, $Some\ Fuzzy\ Topological\ operators\ via\ Fuzzy\ Chaos$, $Solitons\ and\ Fractals\ Vol.\ (12).\ No.\ (13)\ (2001),\ pp.\ 2509-2515.\ (2001).$
 - 4)K. Atanassov and S. Stoeva., Intuitionistic Fuzzy Sets, In Polish Symposium on Interval and Fuzzy Mathematics, Poznan, (1983), 23-26.
- 5) Y.M.Saber and M.A.Abdel Sattar Ideal ON Fuzzy Topological Spaces applied Mathematical Sciences , Vol. 8, (2014), no .34, 1667 1691.
 - $6) \textit{K. Atanassov, Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, } 20 (1986), 87-96\,.$
 - 7) C. L. Chang, Fuzzy Toplogical Spaces, J. Math. Appl .24(1968) 182 190.
 - 8) Bayhan Sadik, On Seperation Axioms in Intuitionistic Topological Spaces . Intern. Jour . Math . Sci. 27(2001), no. 10, 621 630 .
 - 9) D. Coker, An Introduction to Intuitionistic Fuzzy Toplogical Spaces, Fuzzy Sets and Systems .88(1997) 81-89.
 - 10) D. Coker and M. Demirci, On Intuitionistic Fuzzy Points. Notes On IFS: 2 1(1995),

GENERALIZING CONTINUTY IN INTUITIVE FUZZY IDEAL TOPOLOGICAL SPACES

هجلق كليق التربيق الأساهي<mark>ق العلوم التربويق والإنسانيق</mark> مجلة علمية محكمة تصدر عن كلية التربية الأساسية – جامعة بابل

78 - 83.

- 11) D. Coker and A. Es. Hyder., On Fuzzy Compactness in Intuitionistic Fuzzy Topological Spaces, The Journal of Fuzzy Mathmatics, 3-4 (1995), 899-909.
- 12) H. Gurcay, D. Coker and Es., A. Hayder, On Fuzzy continuity in Intuitionistic Fuzzy Toplogical Spees. The Journal of Fuzzy Mathematics Vol. 5, no. 2, 1997, 365 378.
 - 13) N. Levine ., Generalized Closed Sets In Toplogy, Rend. Cerc. Mat. Palermo. 19(2), 1970 571 599.
 - 14)0. Ozbakir and D. Coker, Fuzzy Multifunctions in IntutionisticvFuzzy Toplogical Spaces Notes On IFS 5(1999)No. 3.
- 15) S.S. Thakur and Malviya R., Generalized Closed Sets In Fuzzy Topology, Math. Notes 38 (1995), 137 140.
- 16)S.S Thakur and Rekha Chaturvedi, Generlized, Generlized Closed Sets in Intuitionistic Fuzzy Topology(Submitted).
 - 17) B. Tripathy, Intuitionistic Fuzzy Metric Spaces. Notes on IFS Vol. 5, (1999), NO. 2.
 - 18) N. Turnali and D. Coker, Fuzzy Connectedness in Intuitionistic Fuzzy Topological Spaces. Fuzzy Sets And Systems 116(2000)(3), 369-375.
 - 19)A. A. Salama and Al. Blowi , Intuitionistic Fuzzy Ideal Topological Spaces Journal advances in Fuzzy

Mathematics (*AFM*). *Volume* 7no.1(2012), pp.51 - 60.

20) L. A. Zadeh, Fuzzy Sets, Information and Control, 18(1965), 338 – 353.